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ABSTRACT

Real-Time Systems (RTS) have gained prominence in new domains such as autonomous

cars, drones, and the Internet-of-Things (IoT). RTS have stringent timing requirements for

ensuring their correct operation. Such requirements make it necessary for systems to be

deterministic at run-time. This determinism can be used against them as an attack sur-

face, like scheduler side-channels. One way to reduce determinism in systems is by adding

noise to system components in order to disrupt their deterministic behavior. Schedule in-

distinguishability, that is inspired by differential privacy, protects RTS by increasing the

indistinguishability of the schedule.

It introduces the notion of ϵ-indistinguishability, that measures the probability of infor-

mation leakage when system schedules are observed. Implemented in an ϵ-Scheduler, it is

able to not only offer a higher degree of protection, but also do so with actual guarantees

while still maintaining a high degree of performance. The efficacy of the ϵ-Scheduler is epit-

omized by its success in thwarting an identification attack on a real-time video streaming

application. However, schedule indistinguishability can be compromised by side-channels,

that leak critical information representative of the private timing data. This information can

be combined with other observations made by an adversary to launch attacks on schedule

indistinguishability.

The scope of attacks using side-channels is explored in this thesis. Two attacks, namely,

a timing-based attack and a privacy budget attack are presented. While the timing-based

attack takes advantage of the time taken to draw a sample from the noise distribution,

the privacy budget attack uses the value of the protection duration. After detailing their

threat models and showing their success in disrupting schedule indistinguishability, the thesis

investigates their effectiveness in causing security breaches in RTS. The evaluations are

carried out using the aforementioned identification attack on the video streaming application.

Our results show that side-channel attacks can break schedule indistinguishability and, in

turn, undermine the security of RTS against scheduler side-channels. The work can be

divided into three key steps:

1. Ascertain the type of information that can be leaked by systems implementing the

ϵ-Scheduler.

2. Determine the scope of side-channel attacks using the leaked information.

3. Analyze the relationship between schedule indistinguishability and security of RTS.
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CHAPTER 1: INTRODUCTION

Real-time systems (RTS) are ubiquitous in modern technology. Often found in au-

tonomous cars, robots, drones and medical devices, they play a crucial role in technological

innovation. A real-time scheduler is vital for such systems to function because important

tasks have to meet timing requirements. A periodic design and a guarantee of meeting

deadlines of tasks helps RTS to maintain their utility.

Security is an important issue in RTS as any breach could cause disastrous effects in safety-

critical applications that predominantly employ RTS [1, 2]. An ever-increasing number of

attacks on RTS [3, 4, 5] show the need to focus more on their security. Since RTS have to

meet time-sensitive requirements, their implementation often becomes predictable. Many

tasks arrive periodically and have to be executed before their respective deadlines, hence

giving rise to the predictability as shown in Figure 1.1(a).

While the predictability may help in maintaining real-time guarantees, it gives rise to

timing side-channels that can leak some critical information about the system. In general,

there are many side-channels like power consumption [7] and temperature [8], but we focus

on a timing-based side-channel in this thesis called “scheduler side-channels”. Figure 1.1(a)

shows how across different hyper-periods the periodic tasks arrive and are executed at the

same timestamps. While this kind of determinism helps in meeting deadlines, the schedule

becomes very predictable. An adversary that observes the schedule for long enough can

collect important information on the execution pattern of the system. This information, in

turn, can aid the adversary in launching successful attacks [9]. Recently, there have been a

large variety of attacks that target this vulnerability [10, 11]. There have also been proposed

defense mechanisms to prevent adversaries from succeeding with these attacks [12, 13, 14].

The good mechanisms are the ones that do not significantly reduce the performance of RTS.

Schedule indistinguishability or ϵ-indistinguishability [6], defined in Chapter 3, is one such

mechanism that reduces the success of attacks which seek to exploit scheduler side-channels,

by randomizing the schedule instead of eliminating the presence of scheduler side-channels.

Figure 1.1(b) shows the schedule of periodic tasks after applying randomization to their

arrival times. Employing it not only gives protection to RTS, but the protection itself can

be measured. This technique also achieves a trade-off between security and utility and pro-

vides a parameter used to tweak it, namely ϵ. Schedule indistinguishability heavily relies

on mathematical principles from differential privacy [15, 16]. In differential privacy, data

privacy is protected in the face of queries on databases by adding random noise. Sched-

ule indistinguishability adds Laplace noise to a task’s execution to break easily discernible
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(b) Randomized schedule

Figure 1.1: Reused from Chen et al. [6]. An example of the real-time schedule, consisting
of 3 periodic real-time tasks, produced by a) a vanilla EDF scheduler and b) a randomized
scheduler. It displays the schedules within a duration of 5 hyper-periods. In a) all hyper-
periods have identical execution patterns due to the determinism in RTS. In b) hyper-periods
are non-identical due to randomization used to disrupt the determinism in the schedule.

patterns in the task’s schedule.

While differential privacy achieved using randomization techniques provides measurable

privacy, the implementation of the randomization mechanisms inadvertently leaks some key

information, thus potentially endangering privacy. Naturally, such leaks may be harmful

for schedule indistinguishability as well. To fully understand the scope of schedule indistin-

guishability, it is important to check the effectiveness of attacks, especially ones that have

been successful in compromising differential privacy. In this thesis, two major attacks are

devised, implemented and evaluated on a real-world application. It is important to note that

attacking schedule indistinguishability is not the same as attacking RTS using scheduler side-

channels, however, there is a strong correlation between the two. Compromising schedule

indistinguishability lays the foundation for scheduler side-channel based attacks on RTS.

1.1 RESEARCH GOAL

The work in this thesis starts off by making the following hypothesis:

There exist vulnerabilities in schedule indistinguishability applied to RTS due to side-

channels leaking critical information about the private data.

Each chapter validates parts of this hypothesis and the conclusion states how it is finally

proven. In order to validate the above hypothesis, we state the goal of the thesis as: study-

ing the scope of compromising schedule indistinguishability by exploiting its dependence on

differential privacy, in order to attack RTS. Analyzing the above objective will shed light

on the viability of schedule indistinguishability in RTS. Some possible remedies against the

proposed attacks are also suggested. We tackle questions like:
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1. What type of information can be leaked from an implementation of schedule indistin-

guishability?

2. Is the information gained enough to mount successful attacks?

3. What is the relationship between attacking schedule indistinguishability and attacking

RTS?

In this thesis, we consider attack scenarios mainly from a theoretical standpoint and show

their potential on a video streaming application. We give less importance to their practical

implementation. Hence, details like the type of adversary, the position of the adversary in

the system, adversary’s relationship to the system, etc., are not researched exhaustively.

We briefly present the background knowledge required and some important previous work

related to the topic, before moving on to describe schedule indistinguishability. Then, we

present the attack definitions and their experiment results. We finish with the conclusions

drawn and mention some useful future directions of work.
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CHAPTER 2: BACKGROUND AND RELATED WORK

Since the content of this thesis relies completely on real-time systems (RTS), it is imper-

ative to understand how they work and what their key properties are. Because the notion

of schedule indistinguishability is attacked in the thesis, it is vital to know what it is, why

it is required and the techniques used to achieve it. This section further provides a brief

overview of differential privacy as it is the basic mathematical tool on which schedule in-

distinguishability lies. We also mention important related work that has helped inform our

research and findings.

2.1 SECURITY IN REAL-TIME SYSTEMS

As discussed in the introduction, RTS with real-time constraints are predictable owing to

determinism in their run-time timing behavior. The predictability stems from the periodic

nature of some critical software components, like tasks being constrained by predefined inter-

arrival times. Other important features in RTS are deadlines, worst-case execution times

(WCETs) and real-time scheduling algorithms like earliest deadline first (EDF) [17], rate

monotonic [17], and first-come-first-serve [18, 19]. To ensure such systems uphold real-time

properties such as deadline guarantees, their schedules often form a repeatable pattern that

is both deterministic and predictable. Important related work that focus on securing RTS

have traditionally been tailored to detect inconsistencies and reduce effectiveness of general

attacks [20, 21, 22, 23, 24, 25]. These general attacks, however, do not include attacks

exploiting scheduler side-channels.

While the repeated schedule patterns are crucial for the system to deliver guarantees, the

predictability generated in execution gives rise to side-channels that can be exploited by

adversaries to mount attacks. The limited uncertainty due to the repeatability of schedules

allows the adversary to have a high chance of success on forecasting future arrival times of

jobs in the system. Over the past few years, numerous side-channels have been reported in

RTS [7, 8, 26] and there has been some work studying the existence of side-channels and

covert-channels due to determinism in RTS [11, 27, 28, 29]. Attacks, too, can be of various

types like timing side-channel attacks, or other covert-channel attacks, where two processes

covertly communicate using the scheduler [30]. As discussed before, we are dealing with

scheduler side-channels in this thesis which are a type of timing side-channel. These side-

channels leak critical timing behavior of task schedules. Chen et al. [10] were the first to

introduce the notion of scheduler side-channels in fixed-priority preemptive RTS.
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2.1.1 ScheduLeak

ScheduLeak [10] algorithms can successfully extract timing information of important real-

time tasks from simply observing a task schedule at run-time. The main motive of this

class of attacks is to collect timing information of vital tasks. This includes: (i) when they

occur, (ii) how often they occur and (iii) when (and if) they will occur again. Precisely, the

presence of scheduler-based side-channels leak timing information, where an unprivileged,

low-priority task learns the timing behavior of other periodic (victim) tasks. ScheduLeak is

carried out by observing the execution times using a timer. The information gained by the

adversary, via the low-priority task, allows it to reconstruct the initial offsets and predict the

future arrival times of victim tasks. And at these arrival times, it can launch attacks against

the victim tasks. Without this information, it would have to launch its attacks at random

points in time, thus making the attacks less successful. The timing information leaked has

the potential to help launch other attacks dangerous to a real-time system. Adversaries can

determine periods of real-time tasks with high precision using methods like Discrete Fourier

Transform. The knowledge of periods allows adversaries to launch other attacks. Moreover,

it is easier to create a user space application that obtains information about victim tasks

instead of targeting the scheduler of the system to extract the required information.

2.2 SCHEDULE OBFUSCATION

There has been work [14] associated with randomization of scheduling in fixed-priority

RTS that aims to obfuscate the task schedules in order to prevent scheduler side-channels.

Another method [13] developed a randomization paradigm to reduce determinism in time-

triggered systems. Nasri et al. [31] conducted a comprehensive study on the schedule random-

ization approach and argued that such techniques can expose the fixed-priority preemptive

RTS to more risks. Although the above methods are centered on the problem of scheduler

side-channels, they do not provide analytical guarantees on the protection against scheduler

side-channels. Additionally, the above methods target hard RTS that are highly constrained

by strict real-time guarantees and hence, their effectiveness is limited by the real-time na-

ture. In contrast, we focus on a more realistic real-time system model that has flexible

and more tolerable timing requirements. This enables space for exploring more aggressive

defense strategies to achieve higher (and analyzable) protection against the threats imposed

by scheduler side-channels.
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2.3 DIFFERENTIAL PRIVACY

Differential Privacy was introduced by Dwork [15, 16] in the context of statistical queries

on databases and has grown into a widely used technique to ensure data privacy [15, 32]. It

guarantees that a malicious querier (adversary) cannot reason with high confidence about

the presence of a particular data entry by just looking at the outputs of queries returned

by differentially private mechanisms. Moreover, such protection is quantifiable based on the

randomization mechanism used. Note that while the high-level goals are similar, leakage of

private data is the typical use case for differential privacy as opposed to deterring scheduler

side-channel attacks, that is the typical use case for schedule indistinguishability.

In our context, there are task and job level indistinguishabilities that define the proba-

bility of distinguishing the execution states of one task/job from another in task schedules.

Roughly speaking, a low indistinguishability enables an adversary to identify a task’s exe-

cution from an observed schedule with high confidence and hence makes the system prone

to compromises via scheduler side-channels. To address such a problem, we have an ϵ-

Scheduler [33] that offers “ϵ-indistinguishability” at job level and/or task level, subject to

system constraints as well as the system designer’s security goal. This is achieved by em-

bedding a randomized scheduling mechanism for adding noise to the inter-arrival times for

each job at every scheduling point to abate the predictability and determinism.

2.3.1 Laplace Mechanism

There exist many types of distributions that are used for addressing information leakage

issues (e.g., Uniform distribution [34], Gaussian distribution [35, 36] and Laplace distribu-

tion [16].) The Uniform distribution has been used in the KeyDrown [34] work to prevent

information leakage via keystrokes. In our context, while using the Uniform distribution

would spread the inter-arrival times more evenly (i.e., better security), it would cause more

deadline misses and a serious degradation of the real-time performance. The Laplace dis-

tribution has been used in classic differential privacy problems for generating random noise

to achieve desired privacy protections [16]. Conventionally, the Laplace distribution has a

probability density function defined as:

Lap(x | µ, b) = 1

2b
exp(−|x− µ|

b
) (2.1)

where µ is a location parameter and b > 0 is a scale parameter. The distribution has a mean

equal to µ and a variance equal to 2b2. We use the Laplace distribution to generate random-
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ized inter-arrival times for each job at run-time. In contrast to the Uniform distribution, the

Laplace distribution, while statistically vulnerable over time, can generate an average task

period that’s close to the designer’s desired value thus closely matching required real-time

guarantees. Furthermore, using the Laplace distribution allows us to reuse existing mathe-

matical and algorithmic components with the theoretical foundations from the differential

privacy domain.
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CHAPTER 3: SCHEDULE INDISTINGUISHABILITY

At its core, schedule indistinguishability seeks to break the determinism in schedules of

RTS. Precisely, it utilizes randomization techniques to obfuscate task schedules, thereby

disrupting the predictability in schedules of RTS. This is achieved by adding a sufficiently

large (controlled) noise to the task schedules in order to break their deterministic execu-

tion patterns. Not only does it introduce diversity into the schedules of such systems,

but also provides a scope for analyzable security guarantees. The goal is to offer protec-

tion against scheduler side-channels in RTS while still maintaining good performance and

quality-of-service (QoS) requirements. Schedule indistinguishability captures the difficulty

of identifying information about individual tasks in a task schedule. Chen et al. [6] were

the first to define schedule indistinguishability. This chapter contains the salient points that

will be used in the Chapters 4 and 5 to define attacks on schedule indistinguishability.

3.1 PRELIMINARIES

We denote the Laplace distribution with location µ and scale b by Lap(µ, b) and we

write Lap(b) when µ = 0. We assume that a unit of time equals a timer tick governed by

the operating system and the corresponding tick count is an integer. That is, all system

and real-time task parameters are multiples of a time tick. Throughout this thesis, we

consider a single processor, preemptive real-time system in which some deadline misses are

tolerable [37, 38]. The system contains a set of N real-time tasks, Γ = {τi | i ∈ [N ]},
scheduled by a dynamic-priority scheduler like EDF [17]. We assume the real-time tasks are

independent of each other. We model a real-time task τi by a tuple (Ti,Di, Ci, ηi) where

Ti = {Ti,k | k ∈ N} is a set of admissible periods, Di = {Di,k | k ∈ N} is a set of implicit,

relative deadlines (Di,k = Ti,k,∀k ∈ N), Ci is the worst-case execution time (WCET) and ηi

is a task inter-arrival time function. For a periodic task, Ti = {Ti,1}, so we sometimes use

Ti to denote such a fixed period for simplicity. The inter-arrival time function is illustrated

in Figure 3.1. It is defined as follows:

ηi : N → Ti (3.1)

where τi is the task and ηi(j) is the task’s inter-arrival time at the jth instance. The resulting

inter-arrival time is one of the values in the task’s inter-arrival time set, ηi(j) ∈ Ti. Note

that a strict periodic task always gets a fixed output from its inter-arrival time function,

ηi(j) = Ti,1,∀j ∈ N. So, when the jth instance of task τi arrives, the scheduler computes its
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𝜂! 𝑗 𝜂! 𝑗 + 1 𝜂! 𝑗 + 2 𝜂! 𝑗 + 3 …
𝜂! :ℕ → 𝒯!Regular Task Inter-Arrival Time Function: 

Figure 3.1: Reused from Chen et al. [6]. Illustration of the task execution model. Arrows
represent the scheduled arrival time instants. The distance between two adjacent arrival
times of a task is modeled by a task-specific function ηi.

period from ηi(j) and configures its deadline as well as the next arrival time accordingly.

We are mainly concerned about scheduler side-channels that are exposed by the determin-

istic nature of RTS as introduced in Chapter 2. Hence, we assume that an adversary observes

the system schedule via some existing side-channel [7, 8, 10, 26] and that the adversary does

not have access to the scheduler. Note that some existing attacks have demonstrated that

precise timing information of target tasks can be deduced from the deterministic real-time

schedules at run-time [10, 39]. Such information can then be exploited to recreate a targeted

task’s execution state and then launch further, more critical, attacks on the system with

higher precision. As demonstrated in ScheduLeak [10], an attacker can place precise prime

and probe operations before and after a target task and successfully learn its execution

behavior. These types of attacks rely on the fact that periodicity exists in the real-time

tasks that are being targeted. Schedule indistinguishability aims to eliminate such scheduler

side-channels by obscuring the task periodicity in the schedule. Schedule indistinguishabil-

ity can be categorized into: job-level indistinguishability, where indistinguishability between

jobs of the same task in the task set is considered and task-level indistinguishability, where

indistinguishability between tasks of the task set is considered.

Now, we recap some definitions crucial for understanding the ϵ-scheduler and the attacks

detailed in Chapters 4 and 5. We stick to the job-level indistinguishability definitions as all

the attacks in this thesis are based on them. The inter-arrival time randomized mechanism,

denoted by R(·), is attached to the scheduler to add random noise. It is defined as:

R(τi, j) = ⌊ηi(j) + Y ⌉ (3.2)

where τi ∈ Γ, j ∈ N represent the jth inter-arrival time of the task τi. Y is a random noise

value drawn from some distribution centered at 0. This is the same as drawing a random

value from some distribution centered at ηi(j) – which is how the ϵ-Scheduler functions. The

outcome is rounded to the nearest integer. To analyze job-level indistinguishability with the

9



mechanism defined in Equation 3.2, we use a concept that’s similar to the notion of differ-

ential privacy [15, 16]. An inter-arrival time randomized mechanism is ϵ-indistinguishable

if:

Pr[R(τ, j) ∈ S] ≤ eϵPr[R(τ ′, j′) ∈ S] (3.3)

for all τ, τ ′ ∈ Γ, j, j′ ∈ N and S ⊆ Range(R). This means R(·) enables inter-arrival

time indistinguishability for a single job instance if Equation 3.3 is satisfied. To determine

the degree of noise to be added to make two inter-arrival times indistinguishable, we use

inter-arrival time sensitivity, that reflects the sensitivity of the function ητ (·). For job-level
indistinguishability, denoted by ∆ητ , for a given task τ , it is defined as:

∆ητ =: max
j,j′∈N
j ̸=j′

|ητ (j)− ητ (j
′)| (3.4)

Then, the use of the Laplace distribution Lap(ητ ,
∆η
ϵ
) for generating the randomized inter-

arrival times preserves ϵ-indistinguishability from Equation 3.3 for a single job instance.

However, an attacker observes a longer sequence from the schedule. As a noise draw oc-

curs for every job instance, based on the theorem of Sequential Composition [40], the pri-

vacy degradation is cumulative as the number of draws increases. We measure the dura-

tion in the number of job instances, i.e., the number of noise draws for the corresponding

inter-arrival times. Since the Laplace randomized mechanism R(·) with the scale J∆η
ϵ

is

ϵ-indistinguishable up to J job instances, it can be used to determine the scale of the noise

required for preserving ϵ-indistinguishability up to J job instances.

While the introduced Laplace randomized mechanism offers ϵ-indistinguishability, the un-

bounded output domain for the randomized inter-arrival times makes it infeasible to adopt

in RTS. To address this problem, the randomized inter-arrival time is drawn from a Laplace

distribution that is bounded by a given range. Bounding is achieved by continually sampling

independently from the distribution until a value within the specified range is returned. Let

[T⊥
i , T⊤

i ] be the feasible inter-arrival time range for a given task τi, the bounded inter-arrival

time Laplace randomized mechanism is defined as:

R̃(τi, j) = L̃(ηi(j),
2Ji∆ηi

ϵi
, T⊥

i , T⊤
i ) (3.5)

where L̃(·) is the bounded Laplace distribution of which the drawn values are bounded in

the range [T⊥
i , T⊤

i ] based on a pure Laplace distribution Lap(ηi(j),
2Ji∆ηi

ϵi
).
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3.2 ϵ-SCHEDULER

The basic task of the ϵ-scheduler is to implement schedule indistinguishability in real-

time Linux based on bounded Laplace distributions. On each job’s arrival (the begin-

ning of a new instance), the ϵ-Scheduler uses R̃(·) for generating the task’s next arrival

time. The basic task model in Section 3.1 is extended: a task τi is characterized by

(Ti,Di, Ci, ηi, T
⊥
i , T⊤

i ,∆ηi, Ji, ϵi) where [T⊥
i , T⊤

i ] is a range of tolerable periods, ∆ηi ≥ 0

is the inter-arrival time sensitivity parameter, Ji is the task’s effective protection duration,

and ϵi > 0 is the indistinguishability scale parameter. At each new job arrival, the ϵ-

Scheduler invokes R̃(τi, j) = L̃(ηi(j),
2Ji∆ηi

ϵi
, T⊥

i , T⊤
i ) to determine the next job’s randomized

arrival time point. In this extended task model, the parameters Ti,Di, Ci, ηi, T
⊥
i and T⊤

i

are obtained from the system dynamics. The additional parameters ∆ηi, Ji and ϵi are to

be given by the system designer. If we intend to achieve job-level indistinguishability for a

given task τi, the value of ∆ηi is determined solely by the task’s set of periods, Ti. In this

case, each task’s sensitivity is independent from the others. Finally, it is up to the system

designer to decide, taking potential performance degradation into account, which type of

indistinguishability should be achieved.

Using the bounded Laplace mechanism, R̃(·), an ϵ-Scheduler is able to preserve ϵi- indis-

tinguishability up to Ji job instances for a given task. The more noise samples collected,

the more likely is an attacker to be able to reconstruct the distribution. Therefore, ϵi-

indistinguishability can’t be guaranteed for an infinite time. A feasible solution is perform-

ing periodic security checks to detect possible intrusions and anomalies [41]. With such a

scheme, the distance between two security checks can be used as a reference to compute

the protection duration parameter Ji. Another feasible scheme is the restart-based mech-

anism [42, 43] that enforces a reboot every once in a while. In such a case, the maximum

time to reset the system can be used to compute Ji. When job-level indistinguishability is

considered, the protection duration in time, λ, is defined as:

Ji =

⌈
λ

min(Ti)

⌉
(3.6)

Equation 3.6 offers ϵi-indistinguishability to τi within λ time, where λ is task-specific. The

next variable to be specified is ϵi. Choosing a smaller ϵi value provides better indistinguisha-

bility by generating randomized inter-arrival times with larger noise scale. However, a large

noise scale may sometimes be impractical for real-time applications. Figure 3.2(a) suggests

that an ϵi value above an order of magnitude of Ji can be practical for most RTS. Neverthe-

less, a suitable value for ϵi is highly system-dependent. Each task in a task set can have an
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independent ϵ value for job-level indistinguishability.

3.2.1 Implementing the Laplace Distribution

ϵ-Scheduler requires the generation of random numbers based on Laplace distribution for

obtaining randomized inter-arrival times. However, the Linux kernel code is self-contained

and thus a random number generator that’s based on Laplace distribution is not natively

supported. While it is possible to build such a generator out of the existing random number

generation function get random bytes(), the required computations will be costly. Consid-

ering that the task set parameters are fixed at the design stage, the Laplace distributions

needed by each task are fixed and known as well. Therefore, rather than building a com-

mon Laplace distribution-based random number generator, each required Laplace distribu-

tion’s percent point function (PPF) is converted into an array and stored in the kernel [6].

Then, a Laplace distribution-based random number can be drawn by randomly picking (via

get random bytes()) a number from the array that’s associated with the desired Laplace dis-

tribution. We call this default method of calculating the Laplace distribution in ϵ-Scheduler

as the “look-up sampling” method as we are essentially looking up values from an array based

on the sampling inherent in get random bytes(). In Chapter 4, we contrast this method to

a geometric sampling method [44] used to calculate the Laplace noise. Other details of the

implementation of ϵ-Scheduler can be found in Section 6 of Chen et al. [6].

3.3 VIDEO STREAMING AND IDENTIFICATION ATTACK

Schedule indistinguishability is evaluated using a real-world video streaming application

that sends data across large geographic distances [6]. Generally, it is not always easy to

use the predictable system behavior to learn the run-time information, but a number of

assumptions made in the video streaming application, mentioned below, makes it easier to

extract precise timing behavior from observing the deterministic schedules. We built a video

streaming application using Dynamic Adaptive Streaming over HTTP (DASH) as the video

streaming standard and flask [45] for our web application. Our goal was to show that the

ϵ-Scheduler is useful in negating traffic-based attacks (types of data leakage attacks [46])

on such video streaming applications without significantly affecting the performance of the

application itself. The video stream is hosted by a server and the client is the receiver of the

video stream that is transmitted via the application over the internet over a distance of 1800

miles. Our attacker is placed in between the server and the client, so that eavesdropping on

the network traffic can be easily carried out. The performance of the application is measured
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Figure 3.2: Reused from Chen et al. [6]. (a) The noise scale of Lap(0, 2Ji∆ηi
ϵi

) at 95th percentile
with ∆ηi = 190ms and varying ϵi and Ji. Both axes are displayed in a base 10 logarithmic
scale. (b) Probability density of the randomized inter-arrival times for the task τi with
Ti = {33.33ms, 100ms}. The blue and green lines show the distribution when the desired
period is at 33.33ms and 100ms respectively. In this case, ϵ-Scheduler offers job-level ϵi-
indistinguishability for τi with ϵi = 100, ∆ηi = 190 and Ji = 16.

using the frames per second (FPS) of the video. Ideally, the FPS of the video at the client’s

end is similar to the FPS of the video sent from the server. It is important to note that

the ϵ-Scheduler only randomizes the arrival time of video frames to the client and does not

change the content of the video. An attack can be devised on such applications by exploiting

some key properties of DASH video streaming.

The default values for experiments with ϵ-Scheduler are: ∆η = 190ms, J = 16 with the

desired protection duration to be λ = 500ms for the video streaming task running at 30Hz.

Our evaluation verifies whether the video identification attack in the case of the ϵ-Scheduler

shows results that are random at best. In our setup, we use five videos with varying content,

frame rates and resolutions. We consider a total of five streaming scenarios, each scenario

being the event when only one of the five videos is being streamed via our application, i.e.,

only video x is being streamed, where x ∈ {1, 2, ..., 5}. Eavesdropping is done for 30 seconds

with 2 seconds as the segment length and the corresponding traffic patterns are captured

using Wireshark. For repeatability, this is done fifteen times for each scheduler (Vanilla

EDF, ϵ-Scheduler with ϵ = 10 and ϵ = 103), resulting in 45 traffic pattern samples for each

scenario.
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Figure 3.3: The similarity between the eavesdropped traffic pattern with Vanilla EDF when
video 1 was being streamed and video 1’s fingerprints. The similarity distance is calculated
using temporal sequence analysis.

3.3.1 The Matching Method

While streaming with DASH, each video segment is a certain segment length and quality

level. This type of mechanism results in a distinct traffic pattern due to the segment-

based transmission. This key property can be used to identify videos while streaming. By

eavesdropping on the network traffic during video streaming, attackers can recognize certain

patterns in the traffic. Video fingerprints can be built on the other hand, using the pre-

recorded video files. Hence, attackers can utilize the fingerprints and the observed traffic

pattern to identify which video was being streamed during eavesdropping. The idea is to

merely compare the extracted video fingerprints with the observed traffic pattern of the

video stream to deduce an individual video.

A matching method is necessary for effective outcomes post-comparison. In this way, the

eavesdropped traffic and the video fingerprints provide seamless video identification. The

length of the eavesdropped sample is an obstacle, however. It is time-consuming to eaves-

drop on the entire video. Also most times, the host doesn’t play the entire video, so only

a part of the video is present in the eavesdropped traffic. The systematic steps are: ex-

tracting the video fingerprints from pre-recorded videos, obtaining the eavesdropped traffic

pattern, calculating a similarity estimate between the traffic pattern and the fingerprints

using temporal sequence analysis and finally, identifying the video using this similarity esti-

mate. Specifically, we use the fingerprint-based video identification attack detailed in Gu et
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Table 3.1: FPS Observed by the Client (Video 1)

Scheduler Max Mean Min Std CV

Vanilla EDF 32.00 29.90 28.00 0.68 0.02
ϵ-Scheduler (ϵ = 103) 28.00 25.87 22.00 1.71 0.07
ϵ-Scheduler (ϵ = 10) 14.00 9.23 6.00 2.07 0.22

al. [46], adapting it to the video streaming application that we designed.

The fingerprints that we obtain follow the segmentation rules of DASH. Initially, we cal-

culate the data per second in bits per second (bps) for each video in a differential manner in

order to eliminate the impact of different quality levels on the fingerprints. This sequence

of fingerprints, which correspond to data per second, need to be aggregated into segments

before the matching step because DASH transmits video data in segments. Each segment

covers a certain number of seconds; segment length is usually kept constant. Again a dif-

ferential strategy is used to collect the data per segment and the resulting set is the set of

video fingerprints available to the attacker. For each video in the dataset, a set of video

fingerprints is calculated. Next, the attacker eavesdrops on the network traffic during the

transmission of the video to obtain traffic traces. Assuming that there are no other processes

that require a large bandwidth, the attacker aggregates the obtained network traffic (in bps)

into data per segment in a differential manner. The objective is to find a maximum match

between the sequence of traffic traces and the sequence of individual video fingerprints. The

video corresponding to the maximum match is identified to be the video that was being

streamed during the eavesdropping period.

The similarity measurement is a method to find out which set of video fingerprints is

likely to produce the extracted traffic pattern. Since the assumption is that only one video

is streamed at a time, measuring the similarity of the pattern to each set of fingerprints will

reveal the closest match. We treat this as a time series matching problem. Two important

considerations before solving the problem have to be taken into account: eavesdropping can

be short and the eavesdropped period may correspond to only a portion of the entire video.

Hence, after normalizing the sequences using a sigmoid function, a method called partial

dynamic time warping (p-DTW) is used. p-DTW finds the best local alignment between the

two sequences, i.e., it minimizes the distance between the traffic pattern and any proper sub-

sequence of the fingerprints. The sub-sequence that results in this minimum is selected for

calculating the final similarity between the fingerprint and the traffic traces. The similarity

is quantified using the minimum distance (cost) of aligning the two sequences. Whichever

set of video fingerprints renders the minimum distance is the identified video in our attack.
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Figure 3.4: The similarity distance measures for 15 traffic samples. We shaded the region
between the maximum and the minimum distances. The mean distances are shown in gray
dotted lines. Clearly, the similarity distances between the traffic patterns and video 1’s
fingerprints are rarely the minimum across the 15 tests with ϵ-Scheduler (2 out of 15 with
ϵ = 103 and 0 out of 15 with ϵ = 10), while they are the minimum with Vanilla EDF in
13 out of 15 tests. This shows that the random noise added to the traffic patterns under
ϵ-Scheduler reduces the effectiveness of the traffic-based video identification attack.

3.3.2 Experiment Results Summary

For identification purposes, we calculate the distance metric dist, which is representative

of the similarity between a given traffic pattern and a video fingerprint. Hence, given a

traffic pattern and a dataset containing n videos, there are n distances generated (n = 5 in

our case). The smaller the value of dist, the greater the probability for the traffic pattern

matching the video fingerprint, which is equivalent to the probability of the corresponding

video being streamed during the eavesdropping. In order to compensate for our relatively

short eavesdropping time, instead of setting thresholds on distances to identify the target

video [46], we simply identify the target video as being the one that had the minimum

distance out of the five calculated distances. Figure 3.4 shows the similarity distances for

the traffic samples collected when video 1 was being streamed. The results obtained when

the other videos (2,3,4 and 5) were being streamed, closely match that of video 1.

Table 3.1 shows the FPS statistics observed at the client’s end over a duration of 30

seconds for video 1 in which an FPS data point is computed using the number of frame

packets received from the Internet per 0.5 seconds. The FPS of video 1 sent from the server

is 30. The Coefficient of Variation (CV) value represents relative variability of the FPS in

each scheduler configuration. It reveals that FPS in the case of Vanilla EDF has the smallest

variability as there is no randomization while it shows the largest variability in the case of

ϵ-Scheduler with ϵ = 10. In the case of ϵ-Scheduler with ϵ = 103, it has a reasonably small

CV value and slightly decreased mean FPS with good protection against the eavesdropping

attack that’s comparable to ϵ = 10 (see Figure 3.4). As a result, it shows that a balance

between performance (FPS) and security can be reached by using ϵ-Scheduler with ϵ = 103

in this experiment.

16



CHAPTER 4: A TIMING-BASED ATTACK

This attack exploits a common implementation flaw in the noise generation process used

in differential privacy. Since the ϵ-Scheduler uses a noise generation scheme very similar to

the ones found in differential privacy, this attack can potentially compromise the guaranteed

indistinguishability. A discrete Laplace mechanism works with the ϵ-Scheduler that suffers

from a novel timing side-channel [47, 48]. An adversary can observe the time taken to draw

discrete Laplace noise. Such time information can be used to predict the magnitude of the

noise being added or subtracted by the inter-arrival time randomized mechanism that can

then be employed to discover other sensitive information about tasks. The proposed attack

exploits this side channel to gauge information about the noise being added to jobs in a task.

The attack model is kept general enough so that it can be applied to any application using

RTS. We check the validity of this attack on our video streaming application and go on to

suggest possible remedies.

4.1 DEFINITION AND SCOPE

While discrete versions of Laplace mechanisms [44, 49] defend against floating-point at-

tacks [50], the sampling strategies employed in these approaches open up another timing

side-channel. Here the timing side-channel is the time taken to produce a sample from the

Laplace distribution. Our experiments show that this information enables the adversary to

predict the noise magnitude with greater certainty. The attack works with the ϵ-Scheduler

in an offline setting. For experiment purposes, we test with both the default look-up style

sampling method used by the ϵ-Scheduler and a geometric sampling method [44, 51]. The

look-up style sampling method is described in Chapter 3. The other method tries to simulate

geometric sampling, where sampling is done until a value within the range is returned. The

number of trials is related to the magnitude of the noise returned. Hence, timing the sam-

pler can indicate this number thus leaking the magnitude of the noise. The key difference

between this side-channel and general timing side-channels is that here we are concerned

with timing the sampling algorithm instead of timing the randomization mechanism or the

timing in the schedules. It is important to keep in mind that avoiding discrete samplers

would result in the existence of floating-point side-channels [50].

Discrete samplers aim to retain privacy properties of continuous representations, while

not allowing information to be leaked via floating-point side-channels. In this attack, the

adversary times the noise sampling algorithm. The time calculated helps to determine the
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magnitude of the unknown noise. A naive discrete sampler suffers from this type of a timing

side-channel. For our experiments, we have two types of discrete Laplace samplers. The

first one is the default sampling method in the ϵ-Scheduler [33], where the discrete values

are already available, but which value to choose and the sign are randomly determined using

the get random bytes() function that exists in the Linux kernel. The second method uses

the same principles of the default ϵ-Scheduler, except it has a geometric sampling based

Laplace noise generation technique [51]. Here the sampler uses a geometric distribution

where the magnitude of the noise drawn is preserved by corresponding samples. It is the

time taken to return a value by this geometric sampler that reveals the magnitude of the

noise. There is another method that approximates the discrete Laplace distribution [49], but

it also suffers from the timing side-channel, where the time taken to generate larger values

is longer, due to the fact that larger magnitudes have smaller probabilities of being selected.

The geometric sampling method uses Bernoulli samples for the geometric distribution [44,

51], where we measure the number of Bernoulli trials required for success. Basically, the

number of failures is counted and the sampling is done until the first success. The count

of failures, n, is treated as a sample of the geometric distribution. This results in a linear

correlation between the number of times the Bernoulli sampler executes and the magnitude

of the sample n. Since the number of trials cannot be observed by the adversary, the

running time serves as the side-channel, and is correlated to the unknown value that has

just been drawn. Finally, a linear transformation of the drawn value gives the required

Laplace distribution value. This way we get to preserve not only the magnitude, but also

the exact discrete distribution, by employing rejection sampling.

The timing side-channel does not originate from the rejection sampling, but instead from

the stage where a value is drawn from the geometric distribution. Thus, the time taken by

the discrete Laplace sampling to run has a correlation with the magnitude of the value that

has been returned, which is nothing but the noise introduced for schedule indistinguishabil-

ity. Our experiments show that this is indeed the case (see Figure 4.1). Even though the

correlation is positive, it is only roughly linear. We suspect that baseline experiments for a

much larger range of discrete noise values with many repetitions will more closely depict the

linear nature of the correlation. From Table 4.1, we see that the accuracy of the attack is

consistently less with the lookup method than with the geometric method. A possible reason

why the lookup method is better protected is because it does not follow the linear positive

correlation between the magnitude and the time taken as well as the geometric sampling

technique does, especially for large magnitudes as seen in Figure 4.1.
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Figure 4.1: Average time to generate absolute noise, in µs, using two implementations in
ϵ-Scheduler: (a) Default random lookup from array (avg. over 10,000 trials). (b) Geometric
sampling based Laplace implementation (avg. over 10,000 trials). The plots show a roughly
linear relationship between the noise magnitude and the time it takes to generate it. For
both the plots, the paramters are: ϵi = 103, ∆ηi = 190 and Ji = 16.

4.1.1 The Attack Model

An offline setting oversees the threat model of this attack. The adversary has access to

the outputs of the Laplace mechanism used in the ϵ-Scheduler. More application-specific

details are in Section 4.2. We then show that the adversary can use the attack with the

observed output to get a good prediction of the noise being used for each job in a task.

Since the adversary gets to see the schedule and the “secure” output, it will know the arrival

times of all the jobs that it has already seen. However, crucially, it has no information on

the arrival times of future jobs and this is what it is trying to guess. We also assume that

the adversary knows the mechanism being employed to achieve schedule indistinguishability,

i.e., the Laplace mechanism. In summary, the adversary:

• knows the output after randomization

• can measure the time it takes to compute the output and knows the implicit periods

Any attack requires the adversary to know a baseline of running times and their correspond-

ing noise magnitudes; so it is able to time many executions of schedule indistinguishability

acting on a task. In the differential privacy case, this is akin to the adversary measuring

the time taken to return a query, where the query returns the noise induced output. Using

the baseline values, the adversary has to make a prediction on an unknown noise. Thus, it

needs just one observation after its baseline calculations.

This attack has some limitations. First, we assume that the time taken to produce the

output by the ϵ-Scheduler directly represents the time taken to do the sampling. There may

be other moving parts that add to the time of the function that returns the noise induced
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value. Second, this attack will largely fail if the attacker cannot measure the time taken to

generate a single noise value. In implementations where this is not possible, the time taken

to generate multiple noise values would not be as useful.

4.2 ANALYSIS

In our experiments the baseline values are obtained by aggregating around 10,000 values

for each discrete noise magnitude in the range of interest. This is done separately for the

randomized look-up method and the geometric sampling method. To get the precise times,

we can use the clocks_per_sec()method with clock() or simply the time()method in the

get_laplace_inter_arrival_time() function [33] with averaging to maintain a precision

in microseconds. In video streaming, an adversary may also analyze the traffic capture file

to determine when every packet has arrived. The Laplace distribution is symmetric and

hence the time taken to draw negative and positive values of the same magnitude is also the

same. Figure 4.1 shows the average times required to draw integer noise values with both

methods of noise generation, where the noise magnitude range was [0, 50]. It is clear that

the magnitude of the noise has a positive, mostly linear relationship with the time taken for

the noise induced value to return. We assume that the adversary does not know the range

of integer values of noise, like [0, 9] for the experiments below (the adversary calculates the

baseline values for as many magnitudes as it can). We ran 1,000 trials for each sampling

technique to find the success of the attack. The attacker is trying to find x when y = x+ j,

where x is the arrival time, y is the randomized arrival time and j is the noise. The attack

has the following steps:

1. Calculate the average times ti for generating noise magnitudes i ∈ [0, 9] (in 100µs),

where the sign of the noise being added is randomly determined.

2. Measure time tj taken to generate the unknown noise j

3. Choose i that has closest time to tj as the guess, i.e., jguess = argmini∈[0,9](|tj − ti|)

There are two possible matching techniques: exact match, where |j| = jguess and ap-

proximate match, where −1 ≤ jguess − |j| ≤ 1. So the possible values for exact match

are ±jguess, and the possible values for approximate match are ±jguess, ±(jguess − 1) and

±(jguess + 1). Remember that the sign of the noise cannot be guessed by the adversary, so

uncertainty still remains. Let the upper and lower bounds on the Laplace noise be u and l,

respectively. Then, the range of the guess space for the attacker goes from 1
u−l−1

to 1
2
when

exact matching is used. The guess space goes from 1
u−l−1

to 1
6
when approximate matching
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Table 4.1: Success rates of timing side-channel attacks against implementations of discrete
Laplace distributions. The baseline accuracy based on a random guess for exact and approx-
imate match is 10% and 33%, respectively. We observe that the attack accuracy is always
above the corresponding baseline accuracy.

ϵ Sampling Match Accuracy

1000
lookup

exact 13.2%
approximate 37.1%

geometric
exact 25.3%

approximate 45.0%

100
lookup

exact 12.5%
approximate 33.1%

geometric
exact 18.6%

approximate 39.7%

is used. For example, consider that the attacker wants to know the true arrival time that

is x = 10, but the noise induced arrival time is y = 15. After observing the time taken to

return y = 15, the adversary guesses −6. This is a success under approximate matching as

j = −(jguess + 1) = 5, but it’s not a success under exact matching. The results are shown

in Table 4.1, where ϵ ∈ {100, 1000}, ∆ηi = 190 and Ji = 16. Since the attacker tries both

the positive and negative values, the baseline accuracy is 10 % for exact matching and 33

% for approximate matching. As seen in the table, the success of the attack is always above

the baseline values. Thus, we conclude that observing the time taken to return the noise

induced output leaks critical information like the relative magnitude of the noise used.

Comparatively, the look-up method is more immune to this attack as its time is mostly

made up of the random number generator existing in the Linux kernel. Here, instead of

directly sampling for the magnitude of the noise, sampling is done to find the index of the

array that consists of the noise values. In the geometric method, since the time is directly

calculated for the sampling method, the correlation is stronger and hence the accuracy

of the attack is greater. We can gather that with larger noise values, the success of the

attack decreases. This also means that the success of the attack will reduce as the Laplace

distribution scale, b, keeps increasing.

4.3 RELATION TO SCHEDULE INDISTINGUISHABILTY

Next, we tried to gauge to what degree the knowledge of the noise actually helps an

adversary in attacking the larger real-time system. For this purpose, we first measured the

success of the video identification attack detailed in Chapter 3, when combined with this

attack. Then, in order to make this analysis application-agnostic, we tried to come up with
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Table 4.2: Success rates of the video identification attack after the traffic pattern is re-
adjusted with noise obtained from the timing-based attack. The identification is correct 5
out of 15 times, which is a lot better than the performance in Chapter 3. These results are
for the geometric sampling done in ϵ-Scheduler.

Test lowest score score with vid 1 result

1 0.0232 0.0256 fail

2 0.0217 0.0283 fail

3 0.0251 0.0302 fail

4 0.0242 0.0242 pass

5 0.0256 0.0269 fail

6 0.0236 0.0236 pass

7 0.0263 0.0271 fail

8 0.0221 0.0314 fail

9 0.0239 0.0239 pass

10 0.0218 0.0218 pass

11 0.0234 0.0287 fail

12 0.0201 0.0238 fail

13 0.0198 0.0253 fail

14 0.0227 0.0227 pass

15 0.0219 0.0264 fail

a generic framework that will tell us how much the adversary has benefited from knowing

the noise values. For these experiments, the noise prediction attack was carried out for up

to 300 magnitudes of integer noise (1 magnitude = 100 µs). When measuring the success

of the video identification attack in the video streaming application, the traffic pattern was

re-adjusted after the noise predicted by the attack in this section was removed. We did this

by randomly adding or subtracting the predicted noise to or from the output arrival time

of every frame, since our attack only gives the magnitude. The removal for every frame was

done by analyzing the time information rendered by the pcapng file produced by Wireshark.

It is important to remember that the traffic pattern is in bits per second (bps), so we

had to combine the new arrival times (after removing the noise) with the resolution of every

frame, to calculate the new number of bits that were transmitted every second. This new

traffic pattern was used to conduct the video identification attack. We kept the parameters of

the video identification attack the same as in Chapter 3. The experiments were repeated 15

times when video 1 was being streamed. We predicted the noise for every frame that arrived

within the eavesdropping period. Table 4.2 shows that the correct video was identified in

5 out of 15 tests when geometric sampling was done in ϵ-Scheduler. We observed 4 out of

15 successes when the lookup style sampling was done in ϵ-Scheduler. These are significant

jumps from the 2 out of 15 successes shown in Figure 3.4.
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Table 4.3: Success rates of determining the correct time slots after the noise is removed using
values ascertained from the timing side-channel attack with look-up sampling.

lslot(ms) no. of slots success rate

10 3000 396/777 = 0.5096
5 6000 153/777 = 0.1969
1 30000 42/777 = 0.05405

For our second experiment, we broke the time range of interest into n slots, each of length

lslot. Here, the goal of the adversary is to predict in which time slot each job will arrive in

the presence of the ϵ-Scheduler. This goal is independent of the application concerned and

hence tells more about how knowing the noise used for randomization in schedule indistin-

guishability poses a danger for RTS. The prediction is done after noise is calculated for every

job based on the timer. The noise is then randomly added to or subtracted from a vanilla

model with a constant period known to the adversary. To gauge the degree of success, the

predicted slots are matched against the ground truth values (actual time slots in which the

jobs arrived with ϵ-Scheduler) that were obtained from the video streaming application. The

accuracy of the experiment is defined as the number of jobs for which slots were correctly

predicted divided by the total number of jobs. We conducted our experiments with just

ϵ = 1000 due to time constraints. It would be interesting to see how the accuracy changes

when we vary ϵ. We used 30 seconds as the observation time and 33.33ms as the period; all

other values were the same as in Chapter 3.

From the results in Table 4.3, it is immediately clear that the accuracy heavily depends

on the length of the time slot. We can gauge from the table that a large lslot results in

increased accuracy of the attack. Due to the modeling of the problem, it is easy to see that

the experiment is far more likely to return correct predictions for the first few jobs rather

than the latter jobs. This is because correct prediction of the latter jobs depend, to a degree,

on the correct prediction of the former jobs as the time slots are ordered by their starting

times. It is also hard to establish a baseline here due to the dependent nature of correct

predictions for jobs. A small lslot along with a high accuracy value means that the noise

learned from the sampling based attack is useful in breaking schedule indistinguishability,

thereby compromising the security of RTS.

4.4 POSSIBLE REMEDIES

It would be possible to stop the timing attack by either preventing the adversary from

observing the time taken to produce a randomized arrival time or in the case where this is
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Table 4.4: Success rates of timing side-channel attacks using a time delay for every draw.
We observe that the attack accuracy has drastically reduced.

ϵ Sampling Match Accuracy

1000
lookup

exact 8.5%
approximate 29.3%

geometric
exact 9.2%

approximate 31.4%

impossible, by disrupting the time taken to return the output. The first method is out of

scope mainly because it is an application-specific consideration. The second method can be

done in two ways:

1. Repeat the sampling for a minimum number of times so that the noise magnitude is

not related to the time taken. If we get a correct sample before this minimum, draw

“blank” samples to reach the minimum.

2. Add a time delay for each draw to reach a sufficiently large time threshold, so that the

time taken is constant for all discrete integer noise.

The above method will work for both the ways we have sampled the Laplace distribution

in the ϵ-Scheduler. We tried the second method to test the theory. We fixed the time

threshold to be 200µs because this value was larger than 99% of the times taken to return

outputs. The accuracy results in Table 4.4 show a big drop in success of the attack, which

is conceivable since we are essentially eliminating the side-channel using this approach. The

obvious caveat of this method is that regardless of the noise being added, every draw will

take at least 200µs, thereby increasing the overall time of the randomization process which

directly deteriorates the performance of the RTS. However, with a properly tuned time

threshold that has an acceptable drop in performance, we can greatly reduce the success of

the time-based attack.
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CHAPTER 5: A PRIVACY BUDGET ATTACK

In this attack, we will demonstrate the presence of a side-channel that compromises sched-

ule indistinguishability. In differential privacy terms, the side-channel can be exploited by an

adversarial querier to mount an attack that weakens privacy [48]. Hence, this side-channel

is of interest in schedule indistinguishability as it draws its main principles from differential

privacy. The side-channel arises from the notion of a “privacy budget” that is present in

differential privacy and thus, in schedule indistinguishability. As mentioned in Chapter 3,

the scale of the Laplace noise introduced depends on the number of jobs we want to protect

in our real-time system. This number, J , is a privacy budget that is ingrained within the

ϵ-Scheduler. J can be further converted into the protection duration, as shown by Equation

3.6. Privacy budget can be thought of as a limit on the amount of information that is avail-

able to an adversary. Like in the Chapter 4, this attack model is also kept general enough

so that it can be applied to any application using RTS. Again, we check the validity of this

attack on the video streaming application and go on to suggest possible remedies.

5.1 DEFINITION AND SCOPE

Remember that the adversary can break schedule indistinguishability if it gets to observe

the schedule for a very long time. This is because schedule indistinguishability degrades with

increasing number of jobs and therefore with increasing observation time, making it easier for

the adversary to predict future arrival times of jobs. This would translate to an aggregation

of k queries violating ϵ-differential privacy as
∑k

i ϵi > ϵ, where ϵi is the indistinguishability

of the ith query. Hence, a real-time system with schedule indistinguishability should strive

to keep a privacy timer that allows the schedule to be observed as long as the observation

time does not greatly exceed the protection duration. The protection duration, that is

provided by ϵ-indistinguishability [6], is a limit on the number of jobs for which job-level ϵ-

indistinguishability holds. Alternatively, there can also be a privacy cost counter that keeps

track of the number of jobs that have arrived and aborts the execution of the application

when the number of jobs that have arrived is a lot more than the schedule indistinguishability

limit on the number of jobs.

In the video streaming application, the protection duration is analogous to the eavesdrop-

ping window of time where the adversary gets to observe the network traffic. The protection

duration can be thought of as something like the time between two security checks in a

real-time system. Therefore, we need to ensure that the system is safe between these two
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Table 5.1: There were a total of 20 tests with ϵ = 1000 and protection duration (λ) =
500 ms, where 10 tests were with eavesdropping time = 180 seconds, and 10 tests with
eavesdropping time = 5 seconds. We observe that eavesdropping for much longer than the
protection duration undermines schedule indistinguishability.

eavesdropping window protection duration (λ) number of tests number of passes

180s 500ms 10 9

5s 500ms 10 2

checks. Schedule indistinguishability relies on the assumption that an adversary can only

observe the schedule and nothing else. But, as we will see, it can also observe side-channels,

that leak other parameters tied to the schedule, like the time taken to return an output,

detailed in Chapter 4, and the protection duration, detailed in this chapter.

The adversary’s observation time should not exceed the protection duration. In most cases,

however, if it exceeds by a small amount, then the system may still be protected from

scheduler side-channels for practical purposes solely due to the randomization that disrupts

the periodic nature of execution. But, if it is a lot greater than the protection duration, then

the adversary will almost certainly be able to predict the arrival times of future jobs. We can

keep a check on this by stopping the execution of the application as soon as the observation

time goes past a predetermined application-specific threshold. In terms of differential privacy,

this is similar to calculating the privacy cost of each query and then stopping any new queries

from running if a budget threshold is surpassed. Here, it is important to point out that this

threshold, in no way, is related to the actual arrival times of jobs. Thus, the threshold does

not leak information about the arrival times themselves, but can leak information about the

scale of the noise distribution being used, as we will see in Section 5.2.

We conducted some experiments on the video streaming application to show the impor-

tance of the protection duration. The video being run during the eavesdropping period for

all tests was video 1. We ran the video identification attack from Chapter 3 on the captured

traffic. From Table 5.1, we see that in the first set of 10 tests the correct video was identified

9 times out of 10 because the eavesdropping time (180s) greatly exceeded the protection

duration (500ms), while in the second set the correct video was identified only twice out of

10 times. Evidently, the eavesdropping time cannot overshoot the protection duration pro-

vided by schedule indistinguishability by a lot. Surpassing it by a relatively small amount

does not harm the security of the system here (5s > 500ms); but we may just be getting

fortunate in these experiments because 5 seconds is too less an eavesdropping period for the

matching technique to work in the video identification attack.

26



0 20 40 60 80 100 120 140 160 180 200
Inter-Arrival Time (ms)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
el

at
iv

e
F

re
qu

en
cy

Ji = 16, ∆ηi = 190, εi = 100

Figure 5.1: Reused from Chen et al. [6]. Histogram of the randomized inter-arrival times
generated by ϵ-Scheduler for the task τi with a desired period 100ms running in RT Linux.
The extended task parameters are assigned to be ϵi = 100, ∆ηi = 190 and Ji = 16 (the same
as that shown in Figure 3.2(b)). The plot shows that the generated inter-arrival times are
distributed under the desired Laplace distribution indicated by the dashed line.

5.1.1 The Attack Model

Consider that the system has a privacy budget counter that aborts the application if the

budget is exceeded by some degree. In this case, the adversary has two pieces of information:

the schedule for the observation period and the time after the start of observation at which

the application stops. The fact that the application stopped executing at a certain point can

be used to leak private information because essentially, this time is a result that the system

gives back to the attacker. When this information is combined with the knowledge of the

inter-arrival time function (easily obtainable from the system dynamics) and the bounds on

the Laplace noise (available to the attacker), the attacker can determine J using Equation

3.6. All that is required to ascertain is ϵ, where the jobs are ϵ-indistinguishable.

For this the attacker runs a search with the most commonly used ϵ values in schedule

indistinguishability for RTS. The search technique used is based on dynamic time warping

(DTW) [52], similar to the matching technique used for the video identification attack in

Chapter 3, but here we don’t have to use p-DTW [46] because the arrival times of jobs do

not depend on the work they do or their content. So long as the two times used for matching

are the same, the specific job numbers that arrive in the observed schedule are irrelevant.

This method will work because the probability density of the observed randomized inter-
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arrival times closely resembles the Laplace distribution used for randomization as shown

in Figures 5.1 and 3.2(b). Another alternative search method could be to directly fit the

observed probability distribution with a Laplace distribution and check the goodness of the

fit using the Kolmogorov-Smirnov test [53].

This attack has some limitations. First, we assume that the time when the application

stops is close to the actual protection duration of the system. Without this assumption,

the attack is not feasible. An incorrect value of J obtained from a λ that is much larger

than the actual λ (or protection duration) will not produce good results when doing the

matching-based search for determining the value of ϵ. Further, we assume that the attacker

can accurately determine η from the set of admissible periods T . Only then can the attacker

accurately calculate ∆η that is required to get the scale of the Laplace distribution. The

accuracy of any matching technique will be low if the above two parameters are not precisely

determined. In implementations where this is not possible, the DTW matching will return

ϵ values that are not useful for conducting other attacks.

5.2 ANALYSIS

We implement the attack in a way such that the privacy budget is revealed to the at-

tacker, given the observation time is longer than the budget threshold. The attacker has

to merely time its observation session. This allows the adversary to convert the budget in

milliseconds to the number of job instances for which protection is guaranteed by schedule

indistinguishability. Thus, with the value of J determined, the adversary proceeds to find

∆η. The adversary has been observing the schedule for long enough for the privacy budget

to expire. It is also assumed that the adversary is given access to the set of admissible

periods for the task, via the system dynamics. The adversary can learn the inter-arrival

time function from this. This may not always be straightforward, but we assume this holds

true for our experiments. Once the inter-arrival time function is determined, calculating the

inter-arrival time sensitivity, ∆η, is not difficult. Armed with the values of J and ∆η, the

adversary starts the search for the correct ϵ. It uses a temporal matching technique called

DTW [52] to obtain its guess of the correct ϵ. The matching is done between the observed

points of job arrivals (obtained via the observation period) and the sample arrival time model

for the same duration using a scale determined by the trial ϵ value and the known values

of J and ∆η. The ϵ values used in the search are 1, 10, 102 and 103 because these are the

reasonable ϵ values for RTS as suggested by Figure 3.2(a).

For the above to work, the attacker has to focus only on the arrival times it has seen

during the observation period. With a large enough observation time, the distribution
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Table 5.2: Success rates of privacy budget attacks against different values of ϵ. The baseline
accuracy based on a random guess for the ϵ is 25% because we use four candidate values for
ϵ: {1, 10, 102, 103}. We observe that the attack is successful in every test.

true ϵ d∗ dϵ=1 dϵ=10 dϵ=102 dϵ=103

103
0.36 0.07 0.09 0.13 0.36
0.47 0.05 0.06 0.10 0.47
0.42 0.09 0.09 0.19 0.42

102
0.33 0.12 0.21 0.33 0.16
0.29 0.11 0.15 0.29 0.19
0.31 0.04 0.12 0.31 0.13

10
0.43 0.22 0.43 0.25 0.11
0.44 0.18 0.44 0.12 0.11
0.39 0.17 0.39 0.16 0.08

1
0.48 0.48 0.31 0.09 0.06
0.52 0.52 0.3 0.07 0.07
0.43 0.43 0.32 0.15 0.08

exhibited by the observed randomized inter-arrival timing pattern will be very similar to the

Laplace distribution, with scale b = 2J∆η
ϵ

, used for randomization. Therefore, the attacker

simply measures the similarity between the two temporal sequences: the sequences of the

randomized inter-arrival times from the observed schedule and the sequences of a sample

Laplace distribution with ϵ ∈ {1, 10, 102, 103}, when J and ∆η are known. We will get four

similarity scores, dϵ=1, dϵ=10, dϵ=102 and dϵ=103 , since we are trialing four possible values of

ϵ. The method returns the ϵ with the closest match, i.e., the ϵ corresponding to the lowest

normalized similarity score, d∗ = min{dϵ=1, dϵ=10, dϵ=102 , dϵ=103}. The similarity score is an

indicator of the ϵ that is likely to produce the observed timing pattern, when combined with

the already determined values of J and ∆η. A success in the above implementation of the

privacy budget attack is when d∗ = dϵ=y, where y is the real value of ϵ in ϵ-indistinguishability,

i.e., in the ϵ-Scheduler, ϵ = y. The noise generation technique does not matter for this

attack, and hence, for all the experiments the default look-up method of generating noise in

ϵ-Scheduler was used.

We conducted this experiment across 3 tests for each ϵ value where the budget threshold is

equal to λ and a different schedule is considered for every test. We can qualitatively see the

similarity between the observed probability density and the correct Laplace probability den-

sity in Figure 5.1, where the raw arrival times are used to generate the observed probability

density. We obtain similarity scores via DTW by simply using the two temporal sequences:

one observed from the schedule and one sampled from the candidate Laplace distribution.

The results are shown in Table 5.2, where ϵ ∈ {1, 10, 102, 103}, ∆η = 190 and J = 16.

The baseline accuracy for this attack is 25% as there are four possible values the adversary
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tests for. As seen in the table, we could successfully determine the correct ϵ in all the 12 tests.

Thus, we learn that observing time required to exhaust the privacy budget of a task with

schedule indistinguishability can potentially leak vital information like the ϵ parameter of the

Laplace distribution used to add noise to the job instances of the task. One would assume

that since the relative probability distributions of the candidate ϵ values are so different that

DTW is bound to work well with the observed schedule. However, probability distributions

for ϵ values that are close to one another are similar and hence, the success of this attack

will surely reduce if the candidate ϵ’s are very close to one another. Moreover, in that case,

predicting an ϵ value close to the correct ϵ value may be enough to compromise schedule

indistinguishability and hence it is not considered in this thesis.

5.3 RELATION TO SCHEDULE INDISTINGUISHABILTY

Similar to Chapter 4, we tried to gauge how much knowledge of ϵ in ϵ-indistinguishability

actually helps an adversary in attacking the larger real-time system. For this purpose we

first measured the success of the identification attack detailed in Chapter 3, when combined

with this attack. Then, in order to make this analysis application-agnostic, we tried to come

up with a generic framework that will tell us how much the adversary has benefited from

knowing the ϵ values. For these experiments, the privacy budget attack was carried out for

the four candidate ϵ values mentioned in the previous section. When measuring the success

of the video identification attack in the video streaming application, the traffic pattern was

re-adjusted. This is done by removing a sample noise sequence of the same length (in terms

of the number of frames that arrived during the observation) that is derived from the Laplace

distribution with the ϵ predicted by the attack, with µ = 0. In contrast to the timing-based

attack, we do not know the exact noise values, hence a sample noise sequence is the best we

can do. This makes the attack less suited to work with the video identification.

We removed the noise by subtracting the corresponding noise values in the noise sequence

from the output arrival times of every frame. The noise removal for every frame was done

by analyzing the time information rendered by the pcapng file captured using Wireshark. It

is important to remember that the traffic pattern is in bps, so we had to combine the new

arrival times (after removing the noise) with the resolution of every frame to calculate the

new number of bits that were transmitted every second. This new traffic pattern was used as

input to the video identification attack. We kept the parameters of the video identification

the same as in Chapter 3. The experiments were repeated 15 times when video 1 was being

streamed. We used a value from the noise sequence for every frame that arrived within the

eavesdropping period. Table 5.3 shows that the correct video was identified in 2 out of the
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Table 5.3: Success rates of the video identification attack after the traffic is re-adjusted
with noise taken from a noise sequence that is generated using the predicted ϵ value from
the privacy budget attack. The identification is correct 2 out of 15 times, same as the
performance in Chapter 3.

Test lowest score score with vid 1 result

1 0.0212 0.0293 fail

2 0.0218 0.0241 fail

3 0.0234 0.0285 fail

4 0.0246 0.0306 fail

5 0.0225 0.0263 fail

6 0.0241 0.0241 pass

7 0.0267 0.0296 fail

8 0.0212 0.0224 fail

9 0.0233 0.0309 fail

10 0.0239 0.0270 fail

11 0.0222 0.0253 fail

12 0.0234 0.0234 pass

13 0.0249 0.0254 fail

14 0.0223 0.0298 fail

15 0.0247 0.0286 fail

15 tests. This ratio is same as the 2 out of 15 result shown in Figure 3.4. Therefore, this

attack, while dangerous for schedule indistinguishability, does not work quite well with the

video identification attack, when the above implementation is carried out.

For our second experiment, we broke the time range of interest into n slots, each of length

lslot, like in Chapter 4. The goal of the adversary is to predict in which time slot each job

will arrive in the presence of the ϵ-Scheduler. This goal is independent of the application

concerned and hence tells more about how knowing the ϵ used in schedule indistinguishability

poses a danger to RTS. The prediction is done after noise is calculated from a noise sequence

derived from the Laplace distribution with the predicted ϵ value. This is done for every job

in the time range. The noise is then subtracted from a vanilla model with a constant period

known to the adversary. To gauge the degree of success, the predicted slots are matched

against the ground truth values (actual time slots in which the jobs arrived with ϵ-Scheduler),

that we obtained from the video streaming application. The accuracy of the experiment is

defined as the number of jobs for which slots were correctly predicted divided by the total

number of jobs. Like in the previous chapter, we used 30 seconds as the observation time

and 33.33 ms as the period; all other values were the same as in Chapter 3. We conducted

our experiments with just ϵ = 1000 due to time constraints. It would be interesting to see

how the accuracy changes when we vary ϵ.
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Table 5.4: Success rates of determining the correct time slots after the noise is removed
using values taken from a noise sequence that is generated using the predicted ϵ value from
the privacy budget attack.

lslot(ms) no. of slots success rate

10 3000 184/777 = 0.2368
5 6000 57/777 = 0.07336
1 30000 15/777 = 0.01930

Again we see from Table 5.4 that the accuracy heavily depends on the length of the

time slot, and is less than the accuracy of the timing side-channel attack for the same lslot

value. Larger the length of the time slot, more the accuracy of the attack. Large time slots,

however, are not useful to the adversary. More details on the characteristics of this attack are

mentioned in Chapter 4, Section 3. We do not have a baseline here due to the dependence

of correct predictions of future jobs on correct predictions of past jobs. Presumably, a small

time slot length with a high accuracy value means that the ϵ learned from the privacy

budget attack is useful in breaking schedule indistinguishability, thereby compromising the

security of RTS. This attack performs worse than the timing side-channel attack in both the

experiments mostly because randomly obtaining noise values from a sequence drawn from

Lap(2J∆η
ϵ

) has a lot of uncertainty even if the scale of the Laplace distribution is accurate.

5.4 POSSIBLE REMEDIES

For systems that have a privacy budget, if we can figure out a way to stop the adversary

from observing the time when the privacy budget is exhausted, then we can stop this at-

tack. An easy fix would be to prevent the adversary from observing the schedule for that

long, where the system stops execution when the adversary has crossed an observation time

threshold that is less than and far from the protection duration. However, this is not fea-

sible in all real-time applications. For instance, in the video streaming application with λ

= 500ms, the application has to restart after every time t (where t < 500ms) to prevent

the adversary from eavesdropping for as long as the protection duration, λ. Such a design

decision is not practical for a video streaming application where videos are several minutes

long. Conversely, we cannot increase λ to be in minutes as that will greatly increase the scale

of the Laplace distribution and thus, greatly decrease the real-time utility of the application

(measured in terms of frames per second).

When the adversary’s observations cannot be controlled, it would seem that the only way

to stop the adversary from succeeding is to reduce the effectiveness of the matching method.

One way to do this is by changing the ϵ value for the Laplace noise every j number of job
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instances. Now the adversary searching for the correct ϵ value using DTW, will not succeed

as the scheduler uses more than one ϵ value to add noise. The more the number of ϵ values

used and the more frequently they are alternated, the less will be the success of the privacy

budget attack. Although, this method is promising, it is likely to incur more computational

overhead and will surely deteriorate the utility of the real-time application. Parameters to

be taken into consideration include: the number of ϵ values used for randomization and the

number of jobs, j, after which we change the ϵ value. Both will be tied to the desired QoS

of the application and hence achieving a trade-off is key. With properly tuned parameter

values that cause an acceptable drop in performance, we can greatly reduce the success of a

privacy budget attack.
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CHAPTER 6: CONCLUSIONS

My primary goal in this thesis was to present schedule indistinguishability as a way to

prevent scheduler side-channels and show some vulnerabilities in its implementation via the

ϵ-Scheduler. To this end, I started off by discussing the problems that RTS face, with

particular emphasis on scheduler side-channels. Then, I presented an overview of sched-

ule indistinguishability that acts as a countermeasure against scheduler side-channels and

showed its effectiveness in preventing an identification attack on a real-world video stream-

ing application. I gave a detailed summary of the matching method used to carry out the

identification attack. An adversary who can observe the network traffic and has the video

fingerprints can use the matching method to mount the identification attack.

In the remaining portion of the thesis, I explored the scope of attacks that depend on

vulnerabilities in schedule indistinguishability due to side-channels. While side-channels do

not reveal the private timing information of the schedule, i.e., the arrival times of jobs, they

leak other information about the private data. Attacks that exploit these side-channels can

compromise schedule indistinguishability, thereby weakening security against scheduler side-

channels in RTS. I presented two such attacks on the ϵ-Scheduler. The first attack is based

on a timing side-channel that leaks the amount of time taken by the sampler to produce

a noise sample from the Laplace distribution. I showed that the time taken has a positive

linear relationship to the magnitude of noise sampled using two methods of sampling: the

default look-up method and a geometric sampling method. The second attack uses the

value of the protection duration, guaranteed by schedule indistinguishability, to predict the

ϵ parameter. I showed that by carrying out a simple search, an adversary can estimate the

ϵ value with high certainty.

I evaluated the utility of each attack in negating the protection provided by schedule indis-

tinguishability using the identification attack on the video streaming application. Further-

more, in order to make the evaluation generic to any real-time application, I conducted tests

on a time slot based evaluation framework. The results reveal that side-channel attacks have

the potential to undermine the security provided by schedule indistinguishability in RTS. For

both the attacks, I suggest some possible remedies that can make the ϵ-Scheduler immune

to side-channels. Finally, with the research and experiment results presented in this thesis,

the hypothesis - there exist vulnerabilities in schedule indistinguishability applied to RTS due

to side-channels leaking critical information about the private data, can be validated.
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6.1 FUTURE WORK

The most immediate future work involves running the side-channel attacks in an online

setting. While the offline setting, as presented in this thesis, provides good tools for analysis,

it is far from realistic. In addition to evaluation in an online setting, it is important to conduct

experiments using other real-world applications like the rover application in Chen et al. [6],

to gauge the viability of the attacks. Even if we block the two side-channels presented, the

noise-induced arrival times in the schedule can themselves be a source of information leakage.

After observing a sufficient number of arrival times, the adversary can utilize a distribution

learning framework [54] to predict the distribution used and its scale.

Since the side-channels reveal some disadvantages of the ϵ-Scheduler, it is possible that

noise-based randomization of schedules is not the best way to realize schedule indistinguisha-

bility. One could design the scenario as a cryptography-style game between an adversary

and a challenger, where both have clearly defined goals and advantages. The game proceeds

in the style of a membership inference attack [55] or a deletion inference attack [56]. Hence,

there may be an opportunity to employ the principles used to safeguard against member-

ship/deletion inference attacks, in our domain. In the randomization technique itself, we

can postulate other ways of adding noise, e.g., adding it to schedule components other than

the arrival times, like the deadlines and execution times.
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