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Why Attack Real-Time Systems?

§ Properties of Applications
ØWell-Defined Functionalities
ØSafety-Critical Services
ØHigh Intellectual/Financial Motivations

§ Properties of Real-Time Systems
ØTime Constraints (Deadlines)
ØRepeated Jobs (Periodic/Sporadic Tasks)
ØDeterminism (Worst Case Execution/Response Time Analysis)
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Behavior is highly predictable in RTS!



Real-Time Schedules
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State of the Art

§ Side-Channels
ØMemory/Cache Access Time [1], Branch Prediction [2]

ØPower Consumption Traces [3]

ØElectromagnetic (EM) Emanations [4]

ØTemperature [5]

ØThe ScheduLeak Attack Algorithms [6]

[1] Osvik, Dag Arne et al.  "Cache attacks and countermeasures: the case of AES." Cryptographers’ track at the RSA conference, 2006.
[2] Kocher, Paul, et al. "Spectre attacks: Exploiting speculative execution." 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019.
[3] Jiang, Ke, et al. "Robustness analysis of real-time scheduling against differential power analysis attacks." IEEE Computer Society Annual Symposium on VLSI, 2014
[4] Agrawal, Dakshi, et al. "The EM side—channel (s)." International Workshop on Cryptographic Hardware and Embedded Systems. Springer, Berlin, Heidelberg, 2002.
[5] Bar-El, Hagai, et al. "The sorcerer's apprentice guide to fault attacks." Proceedings of the IEEE 94.2, 2006.
[6] Chen, Chien-Ying, et al. "A Novel Side-Channel in Real-Time Schedulers." 2019 IEEE Real-Time and Embedded Technology and Applications Symposium. IEEE, 2019.
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State of the Art

§ Defense Strategies in Real-Time Systems
ØSecurity Tasks Integration [1]

ØSimplex-Based Intrusion Detection Systems [2]

ØRestart-Based Mechanisms [3]

ØResource Isolation [4]

[1] Hasan, Monowar, et al. "Exploring opportunistic execution for integrating security into legacy hard real-time systems." IEEE, RTSS, 2016.
[2] Yoon, Man-Ki, et al. "SecureCore: A multicore-based intrusion detection architecture for real-time embedded systems." 19th IEEE, RTAS, 2013.
[3] Abdi, Fardin, et al. "Preserving Physical Safety Under Cyber Attacks." IEEE Internet of Things Journal, 2018.
[4] Pellizzoni, Rodolfo, et al. "A generalized model for preventing information leakage in hard real-time systems." 21st IEEE, RTAS, 2015.

We focus on defensive techniques in the scheduler
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State of the Art

§ Data/Information Protection Techniques
ØRandomization [1] and Resource Isolation [2]

ØDifferential Privacy [3]

ØDistributed System Node Privacy [4]

ØInformation Hiding [5]

[1] Yoon, Man-Ki, et al. "Taskshuffler: A schedule randomization protocol for obfuscation against timing inference attacks in real-time systems." 20th IEEE, RTAS, 2016.
[2] Pellizzoni, Rodolfo, et al. "A generalized model for preventing information leakage in hard real-time systems." 21st IEEE, RTAS, 2015.
[3] Dwork, Cynthia, and Aaron Roth. "The algorithmic foundations of differential privacy." Foundations and Trends in Theoretical Computer Science 9.3-4 (2014): 211-407.
[4] Z. Huang, et al., “On the cost of differential privacy in distributed control systems,” 3rd HCNS , 2014.
[5] Klara Nahrstedt, Lintian Qiao, "Non-Invertible Watermarking Methods for MPEG Video and Audio", ACM Multimedia (Security Workshop), 1998.

We focus on the system level core properties (e.g. task parameters)

(cont.)
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𝝐-Scheduler

9

A real-time scheduler that diversifies task schedule 
by enabling schedule indistinguishability



What 𝜖-Scheduler Achieves?

10

High Level Goals
§ Diversify task schedule

§ Offer analyzable protection



Problem Formulation

§ Task Inter-Arrival Time Function:   𝜂!: ℕ ⟶ 𝑇!
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𝜂! 𝑗 𝜂! 𝑗 + 1 𝜂! 𝑗 + 2 𝜂! 𝑗 + 3 …

𝜂! 𝑗 = 𝑇!,#

the inter-arrival time of the task at the j-th instance



Schedule Diversification Strategy
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𝜂! 𝑗 𝜂! 𝑗 + 1 𝜂! 𝑗 + 2 𝜂! 𝑗 + 3 …

§ Inter-arrival time randomized mechanism ℛ 𝜏! , 𝑗 :

ℛ 𝜏! , 𝑗 = 𝜂! 𝑗 + 𝑌

task inter-arrival time function random noise



Schedule Diversification Strategy

§ Inter-arrival time randomized mechanism ℛ 𝜏! , 𝑗 :
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𝜂! 𝑗 + 𝑌"

ℛ 𝜏! , 𝑗 = 𝜂! 𝑗 + 𝑌

𝜂! 𝑗 + 1 + 𝑌"#$ 𝜂! 𝑗 + 2 + 𝑌"#% 𝜂! 𝑗 + 3 + 𝑌"#& …

How to design an effective ℛ ⋅ for schedule diversification and analyzable protection? 

task inter-arrival time function random noise



§ The difficulty of distinguishing a job’s arrival from another
§ ”Schedule Indistinguishability” is formally defined as:

Schedule Indistinguishability
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Pr ℛ 𝜏, 𝑗 ∈ 𝑆
Pr[ ℛ 𝜏$, 𝑗$ ∈ 𝑆 ]

ratio of any two 
inter-arrival time distributions

33.3ms 100ms

We want the ratio to be small
so that it is hard to distinguish two inter-arrival times



§ The difficulty of distinguishing a job’s arrival from another
§ ”Schedule Indistinguishability” is formally defined as:

§ If a mechanism ℛ 𝜏, 𝑗 can yield a ratio ≤ 𝑒", then a 𝝐-indistinguishability is achieved.
§ The 𝜖 value becomes an indistinguishability parameter.

33.3ms 100ms

Schedule Indistinguishability
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Pr ℛ 𝜏, 𝑗 ∈ 𝑆
Pr[ ℛ 𝜏$, 𝑗$ ∈ 𝑆 ]

≤ 𝑒"

≤ 𝑒%

ratio of any two 
inter-arrival time distributions



𝜖-Indistinguishable Randomized Mechanism

§ Laplace Distribution-Based Noise

§ Factors to consider for determining noise scale in RTS:
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ℛ 𝜏! , 𝑗 = 𝜂! 𝑗 + 𝑌𝐿𝑎𝑝 ⋅
0

Inter-arrival Time
Bound
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33.3ms 100ms

Noise Sensitivity

§ Inter-Arrival Time Sensitivity
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Δ𝜂! =: max&,&!∈(
#,#!∈ℕ

𝜂& 𝑗 − 𝜂&!(𝑗$)

distance between any two possible 
inter-arrival times

How large the noise should be to make any 
two inter-arrival times indistinguishable?

The sensitivity Δ𝜂! determines the base distribution scale 



Duration of Protection

§ Attackers getting sufficient samples may reconstruct the noise distribution
§ Adjust the noise scale to ensure 𝜖-indistinguishability up to 𝐽! instances
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Duration of Protection

§ Ensure 𝜖-indistinguishability within 𝐽! instances
§ Integrate with other defense techniques that enforce security checks

ØSecurity task integration [1]

ØRestart-based mechanism [2]
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[1] Hasan, Monowar, et al. "Exploring opportunistic execution for integrating security into legacy hard real-time systems." IEEE, RTSS, 2016.
[2] Abdi, Fardin, et al. "Preserving Physical Safety Under Cyber Attacks." IEEE Internet of Things Journal, 2018.

(cont.)

𝐽! instances of 𝜏! 𝐽! instances of 𝜏!



Inter-Arrival Time Bound
§ Pure Laplace distribution is not bounded
§ Randomized inter-arrival time must be bounded
§ Two ways bound can be enforced: 
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location

scale

bound

Bounded Inter-Arrival Time Randomized Mechanism
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0ℛ 𝜏!, 𝑗 = 0𝐿(𝜂! 𝑗 ,
2𝐽!Δ𝜂!
𝜖!

, 𝑇!#, 𝑇!$)

𝐿𝑎𝑝(𝜂! 𝑗 ,
2𝐽!Δ𝜂!
𝜖!

) bounded in the range [𝑇!#, 𝑇!$]

bounded Laplace distribution



𝜖-Scheduler Model

§ Extended Task Model
Ø𝑇!,   𝐷!,   𝐶!

Ø𝜂!,   𝑇!#,   𝑇!$,   Δ𝜂!,   𝐽!,   𝜖!

§ Bounded Inter-Arrival Time Laplace Randomized Mechanism
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0ℛ 𝜏!, 𝑗 = 0𝐿(𝜂! 𝑗 ,
2𝐽!Δ𝜂!
𝜖!

, 𝑇!#, 𝑇!$)

sets of admissible periods, deadlines and the worst-case execution times

𝜖-Scheduler extended parameters

configurable indistinguishability parameter



Determining a Feasible 𝜖 Value
§ Schedule Indistinguishability
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𝜖 Noise Feasibility in RTS

Pr Cℛ 𝜏, 𝑗 ∈ 𝑆 = Pr Cℛ 𝜏$, 𝑗$ ∈ 𝑆⇒𝜖 = 0Example

Pr ℛ 𝜏, 𝑗 ∈ 𝑆
Pr[ ℛ 𝜏$, 𝑗$ ∈ 𝑆 ] ≤ 𝑒%



Determining a Feasible 𝜖 Value
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§ 𝜖 vs. Scale of the Noise

(cont.)



Simulation-Based Performance Evaluation
§ Synthetic Task Sets

§ Task Parameters

§ Analysis

QoS
Analysis

6000 Task Sets: Task Set Utilization
[0.01,0.1) ... [0.91, 1.0)

10 groups

× × 100The Number of Tasks
5, 7, 9, 11, 13, 15

6 groups
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Inference
Precision

Average Slot
Entropy

DFT-based
Analysis

Scheduling
Overhead

[✩]

Power
Consumption

[✩]

[✩] Conducted on RT Linux on real hardware

Periods 
[10ms, 200ms]

Δ𝜂!
190𝑚𝑠

𝜖!
{10, 10"} 𝐽! = max(

500𝑚𝑠
min 𝑇!

| 𝜏! ∈ Γ)



Implementation in RT Linux Kernel

§ Development Platform

§ Scheduler Implementation
Ø𝜖-Scheduler was implemented as a scheduling mode in SCHED_DEADLINE
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+
Raspberry Pi 4

Model B
Raspbian Linux Kernel

with PREEMPT_RT patch
(4.19.71-rt24-v7l+)



Discrete Fourier Transform-based Analysis
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Vanilla EDF

𝝐-Scheduler (𝝐 = 𝟏𝟎𝟑) 𝝐-Scheduler (𝝐 = 𝟏𝟎)

Task Name WCET (ms) Period (ms) Freq. (Hz)

Software Control Task 2 20 50

Mission Planner 0.002 100 10

Encryption 3 42 23.8

Image Encoding 18 42 23.8

Image I/O 1.46 42 23.8

Network Manager 0.03 10 100



Summary of Evaluation Results
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Evaluation on Real Applications
§ Autonomous Rover System

ØPlatform

ØImpact on Trajectories
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RPi 4 + Navio2

+ RoverBot

autopilot stack

+

𝜖-Scheduler (𝜖 = 10) 𝜖-Scheduler (𝜖 = 10")
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Evaluation on Real Applications
§ Video Streaming over the Internet

ØSetup

ØAttacker’s Inference Results
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(cont.)
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Conclusion
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