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Abstract

Forwarding data packets between switches is the basis of propagation of information in computer
networks of all types. Hence, in order to ensure optimal utilization of hardware and computing
resources, it is imperative to make the forwarding process fast, efficient and resilient. Decentralizing
intelligence in networks often makes packet transmission time-consuming as there is no separation
between the forwarding and routing processes. In this project, | focused specifically on reducing this
time by implementing the forwarding decisions of the switch in the data plane and leaving the control
plane to handle the routing process. This is a well-known feature of software-defined networks (SDNs).
In most cases, switches forward packets depending on their characteristics. Therefore, | focused on this

conditional basis of forwarding at the switch level.

| implemented three different forwarding paradigms for two topologies: (a) utilizing unused, but optimal
topology paths, (b) placing importance on the urgency of data flows and (c) guaranteeing connectivity. |
used the P4 programming language over the OpenFlow protocol since the latter does not provide
complete protocol independency. The evaluation process involved testing the programs on the mininet

network emulator first and then on the SDNet and SUME simulations of the NetFPGA-SUME.

The goal of this project is to provide end-to-end deadline guarantees for real-time networks using an
SDN by programming the switch data plane. This consists of developing and evaluating (i) deadline-
driven (end-to-end delay guarantees) and (ii) budget-driven packet scheduling algorithms and (iii)
providing resilience in case of link failures. The broader mission is to forward packets in an optimal

fashion.
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1. Introduction

Observed from a big picture perspective, SDNs have control plane centralization that calls for the
switches to be non-intelligent forwarding devices whereby the control plane makes all the decisions.
Fast failover, in essence, breaks the model above [1]. It makes a local switch-native decision, without
calling out the controller in the event of a link going down. This is done so that the latency hit (i.e. going
to the controller for an alternative route) can be avoided. The cost of using fast failover is pre-planned
paths. Now, the switch does not only need to know the primary path, but also the failover paths. Such

planning requires computation, which is mostly done at design time.

Conditional Forwarding, as presented in this thesis, extends the motivation of fast failover further. It is
by the way, just a mechanism. It does not, in of itself, guarantee anything; just like the fast failover
mechanism does not guarantee anything. A conditional forwarding enabled switch is capable of doing
some more smart things. The switch in this case makes a forwarding decision for a flow based on the
state of some other flow. The other flow likely has a different (more likely higher) priority level in terms
of forwarding class. The state is mere presence in a given time window (has the switch seen a packet in
say t seconds?) in experiment 1, while it is a comparator (is one host's packet generation rate greater
than that of the other host?, is the link traffic greater than the link capacity?) in experiments 2 and 3.
The design problem that is addressed here is whether such a mechanism can be constructed so that it

can still provide guarantees on end-to-end delay and connectivity, even when failures occur.

1.1 Software-defined Networking

Switches are at the forefront of the majority of Ethernet/IP (industrial protocol) and TCP (transmission
control protocol)/IP (internet protocol) networks including local area network (LAN) and wide area
network (WAN) connections. They play a central role in the effective functioning of SDNs [2]. Previous
research in this area has shown the benefits of separating packet forwarding at switch level from the
control plane that mainly oversees the routing in a network [2,3,4]. Software-defined networking
emerged due to the advent of cloud computing and the complexity of real-world IP networks, that
mostly had vertical integration in them: a common control and data plane. Moreover, SDNs also
promised innovation through network programmability [4]. The basis of the paradigm lies in the
separation of network logic (control plane) and switches/forwarders (data plane). This results in the
centralization of intelligence within the control plane/controller while empowering the user with the

ability to dynamically program the network configuration [2]. Hence, switches act as mere packet



forwarding devices while the control plane is in charge of determining the overall behavior of the
network [3]. Related work has shown that implementing SDN style networks allows more flexibility by
improving network management and simplifying the introduction of new abstractions in networks [5].

However, a number of flaws mainly in security and scalability have been well documented in SDNs [6].

1.2 OpenFlow and P4

OpenFlow has led SDN related research since it rose to prominence among researchers in 2011. Among
other advantages, it provides efficient ways to design the controller’s interfaces with the applications
and the data plane [7]. At its core, OpenFlow is no more than a protocol definition of an application
programming interface (API) that both the controller and the switches should abide by. It merely defines
a system of rules, syntax and semantics that allow multiple entities in a communication system to
interact with each other by transmitting information. The execution works with a set of flow tables that
decide how packets are handled by the switches and the controller. This design style enables network
programmers to ascertain the path of data packets across all the switches in the network. Although well
suited to SDN research, OpenFlow has a major drawback: it is protocol dependent. This means that it
supports protocols for common packet types like TCP/IP and Ethernet/IP but doesn’t allow the switch
programmer to define their own type (headers and fields). As shown in chapter 4, many useful
applications such as tunneling become impossible and others like load balancing become much harder
to implement. Therefore, a relatively new networking language, the P4 programming language, was
utilized in this research. Chapter 2 expands on the reasons behind the preference of P4 over OpenFlow

for this research’s purpose.

1.3 NetFPGA-SUME Simulations

The experiments in this project were conducted by building networking algorithms using P4 and
applying them to forwarders. The NetFPGA-SUME board from Digilent, that has a Xilinx Virtex-7 FPGA,
was used as the target hardware on which the networking systems were constructed. The board is the
outcome of a collaborative effort between Digilent, the University of Cambridge and Stanford
University. As one of its main missions, the board seeks to be a state-of-the-art platform for networking
for students who want to learn the fundamentals [8]. It hopes to provide an accessible development
environment that enables creation of novel designs [9]. Researchers have found the NetFPGA useful
when building high-performance networking systems [10]. While other boards show similar promise in
terms of performance, the NetFPGA board has an edge over the others: its FPGA logic can be

successfully utilized to implement the data processing functions independently while the control



functions can be implemented by a host computer that runs programs. This makes the platform ideal for
designing routers. In this project, the board was used as a stand-alone device, which is one of its many
unique capabilities along with being open source. This enables greater collaboration and higher-quality

research.

In Chapter 2, a critical review is presented of prior work published in the literature that is directly
relevant to the problems addressed in this thesis. A brief explanation on how the work described in the
thesis supersedes some aspects of the previous approaches is given while outlining the research context
of the work. Chapters 3 and 4 describe the main body of the research work undertaken in this study. It
contains the methodology and experimental techniques applied to the research problem. In addition to
the three models of conditional forwarding, these chapters contain the testing procedures used on
mininet [11] first and then on the NetFPGA-SUME's SDNet and SUME simulation test beds. Finally,
chapters 5 and 6 summarize the main takeaways from the project, emphasizing on the usefulness of P4,
advantages of SDN, the conditional forwarding implementations, a few limitations of this research and

scope for future work.



2. Literature Review

This section discusses some of the major pieces of related work on programmable devices and SDNs.
Relevant publications not only discuss the history and evolution of SDNs and OpenFlow, but also the
motivation behind their development [2, 4, 6, 7, 12]. SDNs are constantly evolving, being driven by
emerging trends of virtualized cloud computing, mobility and big data applications [12]. An SDN’s two
standout features: network programmability and separation of the control and data planes are
highlighted in almost all papers covering them [2, 3, 6, 7]. Efficient network management can be
achieved by creating modular applications, supported on SDN platforms, from independent modules
that jointly manage network traffic [13]. Large scale adoption of OpenFlow is encouraged for its proven
benefits in running experimental protocols in everyday networks [14]. However, because OpenFlow is
protocol-dependent, its current version explicitly specifies protocol headers on which it operates [15].
The rise in these headers has increased complexity without providing the flexibility to add new headers.
Hence, P4, a protocol-independent networking language was used in this research. The three main goals
of the P4 community can be summarized as: (a) reconfigurability in the field, (b) protocol independence
and (c) target independence. The NetFPGA-SUME board is covered extensively in recent work [9]. An
interesting claim made by its developers is that the board, when acting as a stand-alone device, can be
used to explore the datacenter interconnect, fulfilling Thacker's vision [16] and bringing Input/Output

(1/0) and network research closer to the CPU-architecture community.

Previous research in closely related areas has focused on network resiliency. For example, the concepts
of link failure recovery or congestion notification systems have been around since the beginning of the
internet. Chu et al. [17] show a way to guarantee 100% traffic reachability in hybrid SDN networks
(traditional IP routers and SDN switches coexisting) by redirecting traffic from the failed link to SDN
switches and then using these switches to explore possible backup paths for the post-recovery network.
Behesti and Zhang [18] propose algorithms to improve network resiliency by maximizing the possibility
of fast failover (doesn't contact the controller and allows switch to make local decisions). But this
mechanism needs a large storage of primary and failover paths. Wang and Shi [19] consider budget and
deadline constraints on scheduling algorithms. To the best of my knowledge, my work is the first to
propose models for optimizing and providing guarantees on an SDN by the means of only programming

the switch data plane.



3. Implementation

3.1 The use of the Programming Language P4

This section covers some aspects of P4 and what attributes of it was used in the work. In traditional
networks, when building a system, we first purchase a packet processing chip that defines how the rest
of the system will be built as well as how the control plane interacts with the data plane. Changing a
feature/protocol in this case is extremely difficult. P4 provides a programmable data plane that reverses
this design philosophy by defining packet processing rules at a high-level via a P4 program. This program
can then be compiled on numerous P4 programmable devices [15]. Figure 1 shows the workflow steps.
This way designers get to select the features they want in their network without having to let third-party
chip vendors make those decisions for them. P4 itself is based on a high-speed packet processing device
called an architecture description; the V1 Model Architecture was used in this research [15]. This
contains a parser that the user uses to define the headers they would like their network to recognize
and their order within an incoming packet. It is in the Match Acton Pipeline (MAP) that the user defines
the tables and packet processing algorithms that they would like to use in their switches. Finally, the
deparser is responsible for putting the final headers back together in the user's desirable order to form
the final outgoing packet. Figure 2 depicts a typical architecture description. The parser, MAP and the
deparser are all programmable. The vendor of a particular architecture also provides extern libraries

that are not defined in P4 but can be invoked by P4 programs like it invokes its core libraries.
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Figure 1 Using P4 in SDNs Figure 2 An architecture description

In the V1 architecture, the switch has ingress and egress ports. In P4, ingress_port is the port on which
the packet arrived, egress_spec is the port to which the packet should be sent to and egress_port is the

port from which the packet is departing (read only in the pipeline). A typical program can be divided into



the following blocks: headers, parser, checksum verification, ingress processing, egress processing,
checksum update, deparser and the switch (an instance of the V1 model). For evaluation purposes, table
entries were used as the main algorithmic components. A runtime control APl is required so that the
user can insert, remove or modify table entries after compiling the P4 program and loading it into the
data plane. The runtime control APl used for the switches was the P4 Runtime because it is both target-
independent and protocol-independent. To generate and receive packets, python scripts were used:
send.py that can produce packets and alter the packet generation rate at the source host and receive.py
that is used to sniff data packets at the end host. Mininet is a network emulator which creates a network

of virtual hosts, switches, controllers, and links [11]. A mininet emulation is shown in figure 3.
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default interface: h3-ethe 00:00:00:00:03:03
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Starting mininet CLI

and your initial configuration is loaded. You can interact
with the network using the mininet CLI below.

To view a switch log, run this command from your host 0S:
tail -f /home/p4/tutorials/exercises/basic/logs/<switchname=>.log

To view the switch output pcap, check the pcap files in /home/p4/tutorials/exerc
ises/basic/pcaps:
for example run: sudo tcpdump -xxx -r sl-ethl.pcap

mininet> xterm hi h2

&l p4@p4: ~/tutor... IR 7 "Node: h2" L "Node: h3"
Figure 3 A sample mininet emulation with three hosts: h1, h2 and h3

3.2 Testing the Models

All the programs were compiled using the P4 compiler and their functionalities tested on mininet.
Correctness of each experiment was determined by checking the auto-generated log files of all the
switches in the network. An example log file is shown in figure 4. Testing the models on the NetFPGA
SUME simulations and board proved to be an arduous task. A lot of technical difficulties had to be

overcome, such as incorrect hardware specifications, Vivado [20] and SDNet [21] licensing issues along
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2 "target": "bmwv2",

3 "p4info": "build/basic.p4info"”,

4 "bmv2_json": "build/basic.json",

5 "table_entries": [

6

7 "table": "MyIngress.ipv4_lpm",

8 "default_actien": true,

9 "action_name": "MyIngress.drop",

10 "action_params": { }

11 T,

12 {

13 "table": "MyIngress.ipv4_1lpm",

14 "match":

15 "hdr.ipv4.dstAddr": ["18.8.1.1", 32]
16 s

17 "action_name": "MyIngress.ipv4_forward”,
18 "action_params": {

19 "dstAddr": "00:80:00:80:81:01",

20 "port”: 1|

21 1

22 3,

23 {

24 "table": "MyIngress.ipv4_lpm",

25 "match":

26 "hdr.ipv4.dstAddr": ["10.0.2.2", 32]
27 )

28 "action_name": "MyIngress.ipv4_ forward",
29 "action_params": {

30 "dstAddr": "00:080:00:82:82:00",

31 "port": 2

32 3

33 3.

34 {

35 "table": "MyIngress.ipv4_lpm",

36 "match": {

37 "hdr.ipv4.dstAddr": ["18.0.3.3", 32]
38 s

39 "action_name": "MyIngress.ipv4_forward",

Tab width: 4 ~

Save — (o &

Ln 20, Col18 - INS

Figure 4 A sample log file of a switch in basic forwarding

with incompatible versions of software. The first step was to run the acceptance test [22] on the board

in order to determine if it had any faults. After installing the correct version of Vivado and getting the

SDNet license, the P4 programs were tested using the Xilinx P4-SDNet toolchain and the NetFPGA-SUME

reference switch design. To verify correctness of each program, gen_testdata.py files, a python script

that generates test data to be used in simulations, were written. On running the P4-SDNet compiler, a

resulting hardware description language (HDL) was generated and a simulation framework initiated.

Next the SDNet simulation was executed. The SUME simulation was run similarly with run.py files, that

read the test packets generated by gen_testdata.py. A useful debugging tool was the HDL waveforms on

the Vivado graphical user interface (GUI). After some careful debugging, successful SDNet and SUME

simulations of all the three designs were obtained. The block diagram in figure 5 represents the

procedure followed for testing.

' T r T
Write P4 and python - o Run acceptance test
programs > Test on Mininet on NetFPGA SUME
L ~ L ~
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Figure 5 Block diagram to show the testing steps
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4. Experiments and Results

4.1 Conditional Forwarding

Conditional forwarding can be implemented in simple programs such as basic forwarding, tunneling and
routing [23]. Since tunneling involves unwrapping layers of headers, in OpenFlow, any header outside
the network protocol specifications of OpenFlow crashes the network. Load balancing in a WAN also
becomes tedious due to different types of protocol headers in traffic from multiple WANs. In all of the
experiments, the switches broadly had the following functions: (1) update destination address with the
address of the next hop, (2) update source address with the address of the switch, (3) decrement the
time-to-live (TTL) of the data packet, (4) set correct egress port for the next hop and (5) update the state
variable based on the latest data packet. The switch had logic only to decide whether to forward, drop
or leave a packet alone based on its header (by looking up table entries). For experiments 1 and 2, the

topology depicted in figures 6 was utilized.
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Figure 6 Topology for Experiments 1 and 2
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4.2 Experiment 1

The switch S is allowed to maintain a state variable that is a representation of a time window and check
for the header type of every entering packet. Header types have different sources and priorities, but the
same destination. Each header type has a pre-defined path and the switch S is in all the corresponding
paths. The switch S makes the forwarding decisions based on the state of the variable. The variable
represents a time window in seconds. Example: H1-> higher priority, H2-> lower priority. If the time
elapsed since the last seen H1 data packet at S is greater than or equal to a predetermined time t in
seconds, the switch S chooses to forward H2 data packets using H1’s path (to S1) until the switch
encounters another H1 data packet, which is when packets of H1 and H2 are again forwarded in their

original paths by the switch. This implementation's premise is based on the assumption that H1’s path is



more optimal (takes less time) than H2’s path. Different paths in the topology merely translate to
different egress ports of the switch. Checking and updating is done on a per-packet basis at S and it
executes all of the five functions outlined in section 4.1 once it receives a packet. This implementation
optimizes the network as more packets take the optimal path to the end host. For this experiment, the

following values were used: t =5 sec and t = 10 sec.

4.3 Experiment 2

The second implementation is built on the same system as described in experiment 1 but the forwarding
condition changes, in that it involves giving precedence to a flow with higher packet generation rate
(more critical). In this implementation, when the rate of H2 exceeds that of H1 (even though H1 has a
higher priority than H2), the switch S starts forwarding H2 packets to H1’s original path (to S1) and H1
packets to H2’s original path (to S2; H1's original path is more optimal). This continues until H2's rate
becomes less than or equal to H1's rate, which is when packets of H1 and H2 are again forwarded in
their original paths by S. The state variable here is a tuple of the packet generation rates of H1 and H2
which are directly obtained from the send.py file. The rates can be changed using this python script.
Here, priority does not matter as long as the flow being given preference has a higher packet flow rate
(more urgent). Similar to the previous implementation, checking and updating is done on a per-packet
basis. This implementation seeks to provide deadline guarantees for the more critical flow, i.e., send its
packets to the end host faster (optimally).

H1 Hz

-

Figure 7 Topology used for Experiment 3

4.4 Experiment 3

This experiment is based on the topology shown in figure 7. Here H1 uses the link between S1 and S2 to
send traffic to H2 and H11 uses it to send traffic to H22. The link can handle only up to a maximum rate
R. Once the traffic in the link exceeds this rate, the link suffers from congestion and might break; the

switches are in a great position to detect congestion and reduce traffic before the link breaks. In this

9



model S2 has a bit that becomes high if the traffic exceeds a threshold rate r, where r is significantly less
than R. As soon as the bit changes to high, S1 keeps reducing the entering traffic at its ingress ports at
the rate of k until the bit in S2 becomes low, i.e., traffic rate in the link becomes less than or equal to r.
This process is often called explicit congestion notification. Again, the evaluation of the traffic rate at S2
is done on a per-packet basis. This implementation ensures network connectivity by averting link failures
due to heavy traffic. For this experiment, the following values were used: r = 10 packets/sec, R =12

packets/sec and k = 0.5 packets/sec?.
The results of the three experiments are summarized in table 1.

Table 1 Results of the three experiments

Experiment # Components Parameters Benefits Result
1 H1, H2,H3,S,S1, | t=5sec, 10sec Optimizes packet | Success
S2 transmission in
the network
2 H1, H2, H3,S,S1, | No parameters Provides end-to- Success
S2 end deadline
guarantees
3 H1, H11, H2, H22, | R=12 Ensures network Success
S1,S2 packets/sec, r = connectivity
10 packets/sec, k
= 0.5 packets/sec?

10



5. Limitations and Future Work

There are a few limitations to the work presented here. First, only the programmability aspect of SDN
was explored. The research did not concentrate on its security and scalability aspects. Thus, the results
represent a very one-dimensional perspective on SDN. A holistic survey is required to measure its
viability in computer networks. Second, P4 was used for only some applications of SDN, which paints a
favorable picture for P4. It is certainly the case that in many areas of networking, OpenFlow trumps P4.
Thirdly, the experiments haven’t yet been tested on the NetFPGA hardware. Hence future work involves
trying to run them successfully on the hardware. Some rules in the third experiment could also be
changed in order to fasten up the data packet transmission in the network: diverting H11's packets to a

new link between S1 and S2 in case of heavy traffic instead of reducing the ingress packet rate at S1.

11



6. Conclusion

As the exciting field of SDNs develops, and data plane programming becomes increasingly popular for
optimizing networks, it is imperative to properly understand each step of the process and the influence
programming language and target device choices have on network systems. The experiments in this
thesis offer insight into the large differences that can arise from such design decisions. They show that
programming the data plane gives the user more flexibility and allows for innovative conditional
forwarding at switch level. The usefulness of P4 in terms of target and protocol independency are
revealed and some of its advantages over OpenFlow are listed. Some conditional forwarding ideas that
can optimize networks, provide end-to-end delay (deadline) guarantees and ensure network
connectivity in the event of high traffic are presented. These ideas were implemented in P4 and tested

on mininet first and then on the SDNet and SUME simulations provided by the NetFPGA-SUME board.
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